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Abstract
2D materials are emerging as promising nanomaterials for applications in energy storage and catalysis. In the wet chemical synthesis of MXenes, 
these 2D transition metal carbides and nitrides are terminated with a variety of functional groups, and cations such as Li+ are often used to 
intercalate into the structure to obtain exfoliated nanosheets. Given the various elements involved in their synthesis, it is crucial to determine 
the detailed chemical composition of the final product, in order to better assess and understand the relationships between composition and 
properties of these materials. To facilitate atom probe tomography analysis of these materials, a revised specimen preparation method is 
presented in this study. A colloidal Ti3C2Tz MXene solution was processed into an additive-free free-standing film and specimens were 
prepared using a dual beam scanning electron microscope/focused ion beam. To mechanically stabilize the fragile specimens, they were 
coated using an in situ sputtering technique. As various 2D material inks can be processed into such free-standing films, the presented 
approach is pivotal for enabling atom probe analysis of other 2D materials.
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Introduction
Since the groundbreaking experimental observation of gra
phene (Novoselov et al., 2004), there has been significant inter
est in 2D materials and their fascinating functional properties. 
Following graphene, the successful synthesis of other 2D elem
ental materials (Mannix et al., 2017), 2D transition metal di
chalcogenides (Manzeli et al., 2017) and 2D perovskites (Lan 
et al., 2019), to name a few, has significantly expanded the 
landscape of 2D materials. Because 2D materials have a thick
ness of one up to a few atomic layers, and thus a high 
surface-to-volume ratio, they are particularly interesting for 
applications involving highly surface-active chemical proc
esses, such as energy storage or catalysis (Nicolosi et al., 2013).

MXenes, 2D transition metal carbides and nitrides, have 
also been the subject of intense research since their discovery 
by the Barsoum and Gogotsi groups (Naguib et al., 2011). 
To date, more than 50 different compositions have been syn
thesized, not even considering the different and highly variable 
surface chemistries (VahidMohammadi et al., 2021; Anasori 
et al., 2023). Their top-down synthesis involves two steps, 
namely the harsh selective etching of the A layer (typically 
Al, Si, or Ga) from a bulk MAX phase(-like) precursor in a typ
ically HF-based wet chemical environment, and the subse
quent exfoliation of the obtained weakly bonded multilayer 
MXenes into individual nanosheets by intercalation of cations 
or molecules (Alhabeb et al., 2017; Lim et al., 2022). The gen
eral chemical formula of MXenes is written as Mn+1XnTz, 

characterized by n+ 1 atomic layers of one or more early tran
sition metals M and n interleaved atomic layers of C and/or N, 
denoted as X, where Tz represents surface termination groups 
saturating the bare surface during synthesis. Because this syn
thesis process is scalable (Shuck et al., 2020), and the MXene 
nanosheets can be easily processed into free-standing films 
(Zhang et al., 2020) or printable inks (Zhang et al., 2019), 
they are attractive and accessible for industrial applications.

The resulting properties are significantly influenced by the 
detailed synthesis parameters (Thakur et al., 2023), which 
control in particular the flake size, defect density, and surface 
chemistry. A carefully optimized synthesis route can therefore 
be used to fine-tune the properties of the MXenes, which is 
comparable to defect engineering in bulk materials (Li & Lu, 
2017). However, Shuck pointed out that MXenes are unfortu
nately often treated as chemicals rather than materials, be
cause the detailed synthesis route is overlooked (Shuck, 
2023). For example, in many synthesis protocols for 
Ti3C2Tz, the most studied MXene to date, spontaneous inter
calation of Li cations (Lukatskaya et al., 2013) is crucial for 
obtaining large and high quality, i.e. less defective, monolayer 
MXene flakes (Ghidiu et al., 2014; Lipatov et al., 2016; Sang 
et al., 2016; Shekhirev et al., 2022). Although it is known that 
the presence of Li influences the properties of the MXenes 
(Chen et al., 2020), it remains a difficult task to localize and 
quantify Li in the material using the commonly applied techni
ques (Shekhirev et al., 2021).
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Atom probe tomography (APT) is an analytical character
ization technique with sensitivity to both light and heavy ele
ments and sufficient spatial resolution to address these 
unanswered questions (Gault et al., 2021). Briefly summar
ized, the atom probe is a time-of-flight mass spectrometer 
equipped with a position-sensitive detector, where individual 
atomic or molecular ions are field evaporated from the apex 
of a sharp, needle-shaped specimen. In combination, the re
corded time-of-flight and the impact coordinates of the ions 
on the detector, allow compositional mapping with a sub- 
nanometer spatial resolution in 3D (De Geuser & Gault, 
2020). Given these capabilities, APT has been increasingly 
used in recent years to characterize functional nanomaterials, 
such as nanoparticles for catalysis, as it provides unique com
positional insights that enable an understanding of the activity 
and degradation of these materials (Li et al., 2022).

A critical step towards the APT analysis of nanostructures, 
including nanoparticles, nanosheets, and nanowires, was the 
development of appropriate specimen preparation approaches, 
as these materials, unlike bulk materials, do not allow straight
forward traditional protocols to prepare needle-shaped speci
mens (Felfer et al., 2015). Common workarounds include the 
deposition of nanoparticles on presharpened needles by electro
phoresis (Tedsree et al., 2011), or the fixation of nanoparticles 
with a micromanipulator and subsequent coating on a support 
(Devaraj et al., 2015) followed by sharpening by focused ion 
beam (FIB) milling. Attachment on presharpened needles com
bined with a coating has also been proposed (Josten & Felfer, 
2022). The deposition of a dense matrix material encapsulating 
the nanoparticles by atomic layer deposition (Larson et al., 
2015) or metallic electrodeposition (Kim et al., 2018) enables 
the utilization of the commonly used specimen preparation us
ing a dual beam scanning electron microscope (SEM)-FIB 
(Thompson et al., 2007). In the case of nanowires, their needle- 
like shape may even allow them to be analyzed without special 
specimen preparation in an atom probe with a local electrode 
(Perea et al., 2006; Du et al., 2013).

Despite the wide range of compositions available, and the 
increasing intensity of research on nanostructures, 2D materi
als such as MXenes have rarely been investigated using APT. 
Although graphene is occasionally used to coat biological or 
liquid APT specimens (Adineh et al., 2018; Qiu et al., 
2020a, 2020b, 2020c), the analysis of graphene is only inci
dental. Previous studies have shown how APT can advance 
our understanding on the detailed composition of 2D materi
als, such as the incorporation of impurity elements during the 
wet chemical synthesis of 2D MoS2 (Kim et al., 2020), or the 
influence of alkali elements from synthesis on the oxidation of 
Ti3C2Tz MXenes (Krämer et al., 2024). In both cases, the 
nanosheets were embedded in a metallic matrix, but they are 
very difficult to localize for targeted sample preparation, and 
the small number of nanosheets in an average dataset limits 
the statistics.

Here, APT analysis is performed by taking advantage of the 
possibility to process MXenes into free-standing films, i.e. a 
macroscopic stack of nanosheets with the same orientation 
held together by weak intermolecular forces such as van der 
Waals forces or hydrogen bonds. APT specimens of a free- 
standing Ti3C2Tz MXene film were prepared by FIB lift-out. 
Following sharpening, APT specimens were coated in situ by 
ion milling a Cr lamella as a sputter target (Woods et al., 
2023), to mechanically stabilize the fragile specimens. In 
addition to enhanced yield, performance, and increased 

field-of-view (Schwarz et al., 2024), as well as the reduction 
of artifacts in the analysis of Li-containing materials (Singh 
et al., 2024), the presented workflow involving the in situ coat
ing technique may also be a starting point for a simplified and 
straightforward APT analysis of 2D materials.

Materials and Methods
Synthesis of Ti3AIC2 MAX Phase
Ti3AlC2 MAX phase was synthesized by solid–liquid reaction. 
Briefly, TiC (99.5 %, Alfa Aesar), Ti (99.7 %, Strem), and Al 
(99.7 %, Strem) powders were ball milled at 1800 rpm for a 
duration of 5 min. The resulting powder mixture was cold 
pressed and then heat treated in a furnace at 1500 °C for a pe
riod of 120 min under a protective Ar environment. Finally, 
the sintered Ti3AlC2 MAX phase was ball milled at 1800  
rpm for 5 min to a fine powder, ready for MXene synthesis.

Synthesis of Ti3C2Tz MXenes
For Ti3C2Tz MXene synthesis, 0.5 g LiF (99 %, Strem) was 
dissolved in 5 mL 10.2 mol L− 1 concentrated HCl (32 %, 
Bio-Lab) in a high-density polyethylene vial, to prepare the 
etchant for selective etching of the Al layer from the previous 
sintered Ti3AlC2 MAX phase. Etching was done by slowly 
adding 0.5 g of the MAX phase powder to the solution under 
constant stirring with a magnetic stirrer at 45 °C for 24 h.

After etching, the complete solution was transferred to a 
50 mL centrifuge tube and filled with deionized water (con
ductivity 0.055 μS cm− 1). The solution was shaken thoroughly 
and then centrifuged at 3500 rpm for a duration of 2 min. The 
supernatant was decanted, and the remaining sediment was re
plenished with deionized water, shaken and centrifuged again. 
Washing was repeated several times until the solution reached 
a near-neutral pH value, i.e. greater than 6. After washing, the 
tube containing the sediment was refilled with deionized water 
and the solution was sonicated in an ice bath for 60 min to pre
vent heating. To remove unetched residues of the MAX phase, 
the solution was centrifuged at 3500 rpm for 30 min and the 
black colloidal supernatant containing single layer MXenes 
was collected. Finally, the colloidal solution with a yield of 
about 7 g L− 1 was stored at 5 °C.

Preparing Free-Standing Ti3C2Tz MXene Film
The free-standing MXene film was prepared by vacuum filtra
tion. 5 mL of the colloidal solution was poured into a vacuum 
filtration system using a Celgard® 3501 membrane. After fil
tration, the film was removed from the membrane. Figure 1
shows both the top (a) and the cross-sectional view (b) of 
the free-standing film, revealing the horizontal alignment of 
the nanosheets in the stack.

APT Specimen Preparation
Needle-shaped APT specimens were prepared using a dual 
beam SEM-FIB (Helios Nanolab 600, FEI) equipped with a 
Ga ion source and a Kleindiek micromanipulator. A first batch 
of specimens was prepared from the free-standing MXene film 
according to the lift-out and sharpening protocol introduced 
by Thompson et al. (2007), as illustrated in Figures 2a–2d. 
For a second batch of specimens, a tool with a horizontal nee
dle that allows for free axial rotation (Cameca Instruments) 
was loaded into the chamber of the dual beam SEM-FIB. 
The workflow essentially followed the lift-out and sharpening 
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protocol described above, except that the lifted-out lamella 
was first attached from the micromanipulator onto the in
serted needle. The chamber of the dual-beam instrument was 
vented, and the needle was manually rotated axially by 90°, 

thereby aligning the MXene nanosheets more favorably for 
APT analysis. After loading the tool with the needle back 
into the dual beam SEM-FIB, the lift-out was picked up again 
with the micromanipulator to continue with common 

Fig. 1. (a) Top and (b) cross-sectional view of the free-standing Ti3C2Tz MXene film.

Fig. 2. APT specimen preparation of the free-standing Ti3C2Tz MXene film following common lift-out and sharpening protocols. (a) Cross-sectional view 
of a lamella sliced out of the film using the Ga ion beam. (b) Lift-out of the lamella, which is attached to a micromanipulator by decomposing a gaseous Pt/C 
precursor from a gas-injection system. (c) Mounted lift-out on a commercial silicon support. (d) Final sharpened APT specimen after annular ion milling. 
The horizontal stacking orientation of the nanosheets is readily visible.
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specimen preparation workflow. Following annular ion mill
ing, specimens such as in Figure 3a were then additionally 
coated with Cr (99.9 % purity) using an in situ sputtering tech
nique described by Woods et al. (2023), building on previous 
reported works (Kölling & Vandervorst, 2009; Douglas et al., 
2023), and as depicted in Figure 3b. More details on the com
plete coating workflow can be found in Schwarz et al. (2024). 
Sputtering parameters for the ion beam pattern were 30 kV 
and 48 pA for 20–30 s, repeated four times after rotating the 
specimen 90° each time to ensure a uniform coating. Cr as a 
coating material was chosen in first place for its well-known 
adhesion properties.

APT Characterization
APT analyses were performed using either a 5000XS (straight 
flight path) or a 5000XR (reflectron-fitted) local electrode 
atom probe (Cameca Instruments), operating in ultraviolet 
(λ = 355 nm) laser-pulsing mode. Parameters were set to a 
base temperature of 50 K, a laser pulse energy varied between 
50 and 75 pJ, a laser pulsing rate of 125 kHz, and a target de
tection rate of 5–10 ions per 1000 pulses on average. Data re
construction and analysis were done with AP Suite 6.3 by 
Cameca Instruments following the default voltage-based re
construction algorithm.

Results and Discussion
Mechanical Instability and In Situ Delithiation
Initial attempts to analyze APT specimens of the free-standing 
MXene film, prepared as described in Figure 4, faced signifi
cant problems with the mechanical stability of the specimens, 
that may be inherent in the APT analysis of such materials. In 
this arrangement, the stacking orientation of the nanosheets is 
perpendicular to the main axis of the APT specimen, as visible 
in Figure 2d. Despite the intermolecular interactions between 
the MXenes nanosheets, they are not strong enough to with
stand the high Maxwell stresses arising from the intense elec
trostatic field applied during the analysis (Rendulic & Müller, 
1967; Moy et al., 2011). In addition, there may also be nano
voids between the nanosheets, as visible in the cross-sectional 
view of the free-standing film in Figure 1b, where intermolecu
lar forces will be almost absent. This results in multiple small 

fractures, i.e. the partial mechanical failure of the specimen 
(Wilkes et al., 1972), as evidenced by drops in the base voltage 
curve in Figure 4a, which can be explained by a sudden in
crease in the detection rate due to the detection of several 
nanosheets breaking off from the specimen apex in very close 
succession. In almost all cases, measurements are limited to 
less than a million ions detected before the specimens fractures 
completely from the silicon support, so the success rate for 
these samples is rather low.

Li was normally only used in the wet chemical synthesis for 
exfoliation. However, here up to 90 at.% Li was measured in 
the analyzed specimens. In the reconstructed 3D atom map in 
Figure 4b, it was observed that at the beginning and then after 
each microfracture, Li field evaporates first before other spe
cies such as Ti are also detected. During APT analysis, the in
tense electrostatic field can cause preferential migration of Li 
atoms (Greiwe et al., 2014), also known as in situ delithiation 
(Pfeiffer et al., 2017), which is a known artifact in the analysis 
of Li-containing materials. Hot spots in the detector map in 
Figure 4c, localized preferentially on the side of the specimen 
directly illuminated by the laser, are another indicator for 
this phenomenon, since the temperature rise of the specimen 
due to the absorbed laser energy increases the mobility and 
thus the migration of the Li atoms (Kim et al., 2022). 
Considering the observed mechanical instability of the speci
men, the in situ delithiation could possibly even favor it, since 
the sudden deintercalation of Li may weaken the intermolecu
lar forces between the nanosheets.

In summary, it was not possible to perform a reliable APT 
analysis on specimens of the free-standing 2D material film 
prepared using the common FIB lift-out and sharpening proto
cols. On the one hand, the specimens lack mechanical stability, 
and on the other hand, preferential migration of Li atoms pre
vents detailed compositional analysis.

In Situ Coating for Mechanical Stabilization
In order to overcome both the mechanical instability and in situ 
delithiation issue that hinder successful APT analysis of the free- 
standing Ti3C2Tz MXene film, specimens were prepared ac
cording to the workflow described in Figure 3. Coating of 
APT specimens resulted in enhanced yield for a wide range of 
materials (Kölling & Vandervorst, 2009; Larson et al., 2013; 

Fig. 3. Revised APT specimen preparation for the free-standing Ti3C2Tz MXene film utilizing the in situ sputtering technique. (a) Uncoated APT specimen. 
The lift-out was rotated to orient the nanosheets along the specimen. (b) In situ coating procedure. The milling pattern is schematically shown in yellow.
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Schwarz et al., 2024), for example by smoothing out the rough
ness of the specimen surface, but also suppressed in situ delithia
tion in battery materials (Kim et al., 2022; Singh et al., 2024), or 
the piezoelectric effect in perovskite-structured materials (Kim 
et al., 2023) by shielding the electrostatic field. By sputtering a 
material onto the specimen, pores and nanovoids may also be 
filled, which helps to reduce varying magnification in the recon
struction due to ion trajectory aberrations as well as possible 
crack tips for premature fracture during analysis (Pfeiffer 
et al., 2015). Various methods have been proposed to eliminate 
pores in APT specimens, such as electron beam-induced depos
ition (Pfeiffer et al., 2015; Barroo et al., 2020), electrodeposition 
(El-Zoka et al., 2017; Mouton et al., 2017), liquid metal encap
sulation (Kim et al., 2022), or resin impregnation (Zand et al., 
2023). However, these potential solutions have all their own 
drawbacks, such as exposing the material to an electrochemical 
environment, heat, or high pressure, which could alter the chem
istry or structure of the material. In situ coating, on the other 
hand, has the advantage that a variety of materials can be 
used as sputter targets (Schwarz et al., 2024), and it can even 
be performed at cryogenic temperatures (Woods et al., 2023), 
minimizing the potential impact on the chemistry and structure 
of the material.

After metallic coating using the in situ sputtering technique, 
more than half a dozen specimens of the free-standing MXene 
film were successfully analyzed by APT, as exemplified in 
Figure 5. As visible in the cross-section of the reconstructed 
3D atom map in Figure 5a, the as-prepared free-standing 
MXene film specimen is well coated by Cr. In addition to 
Cr, the coating itself contains also O, which passivates the 
Cr during the sputtering process itself, and Ga from the ion 
source, as discussed in more detail by Schwarz et al. (2024). 

Some of the Cr coating also seems to have penetrated into 
the stacked material, oriented along the specimen, and filled 
nanovoids between the nanosheets, as highlighted in the 2D 
compositional contour plots in Figure 5c, thus mechanically 
stabilizing the specimen. The quality of the metallic coating 
determines whether the specimens can be analyzed in the 
atom probe.

Figure 5b provides a plot of the base voltage and the back
ground level curve of these data, both metrics that indicate 
measurement stability. Except for small drops, the base volt
age steadily and smoothly increases, indicating stable field 
evaporation conditions. The background is largely constant 
and below 10 ppm ns−1 on average. Previous studies have 
shown that a low and constant background level is essential 
for the detailed quantification of alkali elements such as Li 
(Santhanagopalan et al., 2015; Lu et al., 2017; Kim et al., 
2022), which can be lost in the background from uncorrelated 
DC field evaporation due to their low expected evaporation 
field compared to the other elements composing the material 
(Tsong, 1978). In addition, the detector hit maps of the Cr 
coated samples in Figure 5d do not show characteristic hot 
spots, that would indicate a preferential migration of Li atoms. 
This confirms that the Cr coating prevents the in situ delithia
tion, as was suggested in previous studies (Singh et al., 2024). 
Normalized to 3 Ti atoms, a content of 0.41 Li was measured 
in the region of interest, encompassed by the dark green-cyan 
iso-compositional surface of 15 at.% Ti in Figure 5a, which is 
comparable to inductively coupled plasma mass spectrometry 
data for Ti3C2Tz MXenes, where Li was also utilized in the 
synthesis for intercalation (Sharma et al., 2017).

Compared to previous work, where exfoliated Ti3C2Tz 

MXenes were electrodeposited into Co (Krämer et al., 

Fig. 4. Characteristic APT analysis of the free-standing MXene film prepared following common lift-out and sharpening protocols. (a) Base voltage and 
detection rate curve. (b) Reconstructed 3D atom maps. (c) Detector hit map. The direction of the laser beam is indicated by an arrow.
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2024), significantly larger volumes of the material of interest 
were measured. To illustrate the improvement, the detected 
Ti ion counts, including the contribution of decomposed mo
lecular ions, from the APT data of the exfoliated MXenes from 
Krämer et al. (2024) and the free-standing MXenes films were 
compared. While less than 0.1 million Ti ions were detected in 
the dataset for the exfoliated MXenes embedded in Co, 
between 1.5 and 2 million Ti ions were collected in the free- 
standing MXene film in different measurements. All these val
ues refer to data acquired on a 5000XR instrument with a 
detection efficiency of 52 %, as stated by Cameca 
Instruments. Notwithstanding the much simpler and time- 
saving specimen preparation workflow, the APT data ob
tained for the nanomaterial is significantly larger and therefore 
statistically more reliable.

Besides Cr, other materials may also be considered as sput
ter targets in the future. Although it has been shown that speci
mens can be easily coated with Cr using the in situ sputtering 
technique, it has some disadvantages for this particular case. 
During the sputtering process, the clean Cr layer is constantly 

passivated with an oxide layer (Schwarz et al., 2024), despite 
the vacuum inside the SEM-FIB. Since the coating also pene
trates into the free-standing film specimen itself to fill nano
voids, the detailed determination of the oxygen content of 
the nanomaterial becomes nearly impossible. Therefore, Cr 
should be replaced as coating material by a more chemically 
inert metal in further studies, depending on the adhesion 
and the probability of peak overlap with the material of inter
est in the APT mass spectrum.

Conclusion
Despite the great interest in understanding the functional 
properties of nanomaterials by characterizing their detailed 
composition, 2D materials have rarely been studied using 
APT. Using Ti3C2Tz MXenes as an example, the common 
SEM-FIB specimen preparation has been revised utilizing an 
in situ sputtering technique to facilitate the APT analysis of 
2D materials. By processing the colloidal MXene solution 
into an additive-free free-standing film to enable a common 

Fig. 5. Characteristic APT analysis of the free-standing MXene film prepared following the revised specimen preparation. (a) Cross section of the 
reconstructed 3D atom map. (b) Base voltage and background level curve. (c) 2D compositional contour plots of the extracted region of interest 
highlighted in (a). (d) History of the detector hit map during the measurement, starting at (1). The direction of the laser beam is indicated by an arrow.
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lift-out and sharpening procedure, and by coating the APT 
specimen, it was possible to acquire relatively large volumes 
of the 2D material with high data quality. The coating stabil
izes the fragile specimen, but also prevents the in situ delithia
tion of Li, which was incorporated into the material during 
synthesis. As materials other than MXenes can also be proc
essed into free-standing films (Dikin et al., 2007; Li et al., 
2023), the presented workflow has the potential to be a start
ing point to study the detailed composition of 2D materials 
with APT.
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