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� Dehydrogenation of hydrogenated EBM and wrought Tie6Ale4V alloys is compared.

� The kinetics and products of hydride decomposition are different in the two alloys.

� The differences result from different microstructures of the origin alloys.

� Decomposition of da to db is reported here for the first time.

� The EBM alloy may be more prone to hydrogen damage at elevated temperatures.
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Thermal decomposition of titanium hydrides in electrochemically hydrogenated electron

beam melting (EBM) and wrought Tie6Ale4V alloys containing 6 wt% b is compared. Dif-

ferential scanning calorimetry (DSC) is used to identify phase transitions. High-

temperature X-ray diffraction (HTXRD) is used to identify phases and determine their

contents and crystallographic parameters. Both alloys are found to contain aH (hcp) and bH

(bcc) solid solutions, as well as da (fcc) and db (fcc) hydrides after hydrogenation. da is found

to decompose between room temperature and 350 �C to aH (in both alloys) plus either bH

and db (wrought alloy) or db only (EBM alloy). db fully decomposes at either 450 �C (wrought

alloy) or 600 �C (EBM alloy) to aH plus H2 desorption (which starts at 300 and 350 �C in the

wrought and EBM alloys, respectively). In the case of the wrought alloy, bH is also formed in

this decomposition reaction due to faster diffusion of hydrogen. The non-continuous, finer

needle-like morphology of the b-phase in the as-printed EBM alloy combined with its

smaller lattice constants seem to inhibit hydrogen diffusion into the bulk alloy through the

b-phase, thus triggering da dissociation into db (rather than to bHþdb) and db decomposition

into aH (rather than to aH þ bH). Hydrogen incorporation in the aH phase results in its

expansion in the c direction in both alloys. HTXRD allows to conclude that both da and db

hydrides decompose up to 600 �C. Hydrogen peaks measured at higher temperatures are

due to hydrogen desorption from the hydride that is decomposed from the sample's bulk
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and/or hydrogen desorption from bH and/or aH during heating. These findings indicate that

the EBM Tie6Ale4V alloy might be more prone to hydrogen damage at elevated temper-

atures than its wrought counterpart when both have a similar b-phase content.

© 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Tie6Ale4VexH. In most studies, hydrogenation was per-

Introduction

Tie6Ale4V is a dual phase, a (hcp) þ b (bcc) alloy with an

attractive combination of properties. It is therefore the most

commonly used Ti-based alloy in the aerospace, automotive

and biomedical industries [1,2]. Given the unique, attractive

properties of Ti-based alloys and the difficulty tomanufacture

complex parts from them by traditional processes such as

casting and machining, it is not surprising that extensive ef-

forts have been made in recent years to process them by ad-

ditive manufacturing (AM), mainly for biomedical [3,4] and

aircraft [5] applications.

A wide variety of microstructures of Tie6Ale4V can be

obtained (and, thus, diverse product's properties), which are

broadly classified into three types: lamellar, equiaxed and

bimodal. These microstructures can be tailored through con-

trol of the solution annealing temperature, cooling rate and

final aging temperature [6]. Different AM technologies imply

different microstructures and phase contents in AM'ed
Tie6Ale4V products, and consequently e different properties

[7,8]. The microstructure of EBM Tie6Ale4V typically consists

of a primary a (hcp) phase and a small amount of b (bcc) phase

[7,9]. Microstructural differences between wrought and EBM

Tie6Ale4V have also been discussed [10].

Tie6Ale4V is susceptible to hydrogen damage [11].

Hydrogen might enter the alloy during processing, electro-

plating or other post-treatments, storage, corrosion, or

cathodic protection [12,13]. A wide range is noticed in the re-

ported values of hydrogen diffusivity [14,15] and solubility [16]

in Tie6Ale4V, which may be attributed to their dependence

on the microstructure and b-phase content. Hydrogen in

Tie6Ale4V can diffuse preferentially through the b phase and

react with the a phase along the a/b interphase boundaries to

form brittle hydrides [12,17,18]. Three such hydrides have

been observed at room temperature: d (fcc), ε (fct with c/a � 1),

and metastable g (fct with c/a > 1) [19,20]. The presence of

these hydrides in the alloy results in lattice expansion, strain,

cracking, and eventually alloy degradation. Ti-based alloys

processed by AM might be even more prone to hydrogen

damage than their wrought counterparts due to a distin-

guished microstructure [18,21], porosity, residual thermal

stresses, hydrogen absorption from the printed powder, etc.

Therefore, it is important to study the interaction of hydrogen

with AM'ed Tie6Ale4V before this alloy can be used exten-

sively as a construction material, particularly in critical

applications.

Due to the wide interest in Ti alloys, extensive work has

been conducted to explore the TieHphase diagram [22,23] and

the phase boundaries of Tie6Ale4VexH [24e28]. The hydro-

genation method and microstructural morphology were

found to play a major role in the decomposition behavior of
formed from a gaseous environment at high temperatures to

enhance hydrogen diffusion from the surface into the bulk, in

order to either achieve homogeneous composition and

microstructure or study the high-temperature phase consti-

tution [29]. High-temperature hydrogenation resulted in for-

mation of phases such an orthorhombic martensite a’’ [30], a2
(Ti3Al) [27], or a’ [28,31]. Electrochemical hydrogenation, on

the other hand, has been employed to less extent in the study

of the phase boundaries of Tie6Ale4VexH because the hy-

drogenation is typically concentrated in vicinity of the metal

surface, hence a concentration gradient is established be-

tween the surface and the bulk [12,32e34]. Decomposition

differences between electrochemically charged and gaseous

charged duplex-annealed Tie6Ale4V alloy with 60 vol%

equiaxed primary a and 40 vol% transformed b were demon-

strated [35]. Electrochemically hydrogenated samples were

claimed to contain a and b phases as well as a hydride phase

and showed one major decomposition peak in temperature

programmed desorption mass spectrometry (TPD-MS, also

known as thermal desorption spectroscopy, TDS) between 562

and 580 �C. When the heating rate was increased, a shift was

evident to higher temperatures. In contrast, hydrogenation

from the gas phase resulted in the appearance of mostly a

hydride phase and one major decomposition peak, albeit at

lower temperatures, between 404 and 431 �C.
Hydrogen desorption from hydride-containing materials

has been described as a series of five reaction partial steps: (1)

hydride decomposition at the metal/hydride interface, (2)

interstitial diffusion of hydrogen atoms from the hydride

phase to the subsurface through a solid solution, (3) exit of

hydrogen atoms through the surface, (4) chemisorption of

hydrogen atoms on the surface, recombination of hydrogen

atoms to hydrogen molecules, and physisorption of hydrogen

molecules on the surface, and (5) desorption of molecular

hydrogen to the gaseous environment [36]. Dehydrogenation

investigations of Ti hydrides are widely conducted, mainly

using d-TiH2 powders. Many studies have shown that the ki-

netics of TiH2 decomposition can be controlled via control of

the annealing atmosphere e vacuum [37e41], air [32,38,42],

argon [33,42,43], nitrogen [42], and helium [38]. The dehydro-

genation behavior has also been shown to be dependent on

the original powder size [44] and the presence of an oxide layer

on the surface of the hydride [45e47]. Bhosle et al. [38] showed

that TiHx phase containing less hydrogen than TiH2 can be

thermally stable at higher temperatures. The coexistence of a,

b and d in hydrogenated titanium annealed in argon was

observed [45,48], and was attributed to hydrogen concentra-

tion gradient inside the TiH2 decomposed particles [48]. TiH2

was found to start releasing hydrogen at 375 �C under Ar flow

and a heating rate of 10 �C/min [45]. The lattice parameter

increased during heating until hydrogen release started, due
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to thermal expansion, but then decreased [45]. The heating

rate and mass transport conditions of Ar (namely, either

flowing or stationary) changed the critical temperature and

sequence of decomposition. Takasaki et al. [49] reported that

d in Ti precharged electrochemically is completely dissociated

into a þ b phases at ~327 �C, with an indication of hydride

thermal instability at ~100 �C. Increasing the heating rate

caused the dissociation temperature to increase. In another

study, Blackburn et al. [16] studied absorption and desorption

of hydrogen from Tie6Ale4V powder pre-hydrogenated in a

gaseous environment, and observed three desorption peaks

when heated to 700 �C at a nominal heating rate of ~1 �C/s.
Studies of hydrogen in AM'ed Ti-based alloys are still rare,

and have been focused on hydrogenation from the gaseous

phase [14,50e54], although electrochemical hydrogenation

behaves differently and in many cases resembles better the

actual conditions [21]. In a recent study [54] it was reported that

EBM Tie6Ale4V hydrogenated electrochemically at a current

density of �50 mA/cm2 for 2 days contained cubic d-TiHx and

tetragonal g-TiH hydrides, in addition to a and b phases. Navi

et al. [21] have recently shown that Tie6Ale4V EBM and

wrought alloys, containing 6 wt% b in the non-charged condi-

tion, contained a/aH (hcp) and bH (bcc) solid solutions aswell as

da (fcc) and db (fcc) hydrides, which had not been reported

before, following electrochemical hydrogenation at �25 mA/

cm2 for four days; the da and db hydrides were claimed to

transform from the primary a phase. The hydrogen uptakewas

higher in the wrought alloy due to a lower lattice constant of

the b phase and discontinuous arrangement of the b-phase

particles along the short-transverse direction in the EBM alloy.

Themicrostructure of the EBM alloy, withmany a/b interphase

boundaries, enhanced hydride formation, making the EBM

alloy more susceptible to hydrogen-induced cracking along

interphase boundaries. For both alloys, a single hydrogen

desorption peak at ~620 �C was observed in the TPD spectra.

Hydrogen also has some positive effects on titanium and

other metals, as well as on semiconductors. For example, it

stabilizes the b phase [55], and is used as a temporary alloying

element to improve the structural and thermomechanical

properties of titanium [55,56]. Titanium hydride is commonly

used for hydrogen (energy) storage applications, production of

pure hydrogen for clean energy applications, bonding metals

to non-metals, processing of nanocrystalline titanium and

inexpensive titanium powders, as an agent for foaming

aluminum and other metals, etc. [20,37,39,43e45]. These ap-

plications involve either full decomposition of the hydride or

partial release of hydrogen from it during heat treatment in a

controlled environment. Hence, the study of non-isothermal

titanium hydride dissociation is of great technological impor-

tance, both for the improvement of existing applications and

for the development of new ones [20,43,44]. Furthermore,

hydrogen desorption processes may be different in AM'ed al-

loys compared to their wrought counterparts due to differing

microstructures, trap density, and binding energy. Therefore,

here we extend our previous studies [18,21] and investigate the

thermal stability and decomposition of the da and db hydrides

in EBM and wrought Tie6Ale4V alloys that are hydrogenated

electrochemically for four days. To this aim, we utilize high-

temperature X-ray diffraction (HTXRD) and differential scan-

ning calorimetry (DSC).
Materials and methods

Sample preparation and electrochemical hydrogenation

EBM Tie6Ale4V, Grade 5, was processed in an ArcamQ20 Plus

machine at the AM Center of Rotem Industries Ltd. (Mishor

Yamin, Israel). Wrought Tie6Ale4V, Grade 23 (ASTM F136)

was produced by Dynamet, Inc. (Washington, PA). Both alloys

were found to contain ~6 wt% b phase [21], therefore any

possible effect of the content of this phase on different be-

haviors of the two alloys can be excluded. Samples with

nominal dimensions of 18 � 18 � 0.3 mm3 were cut by electric

discharge machining (EDM), mechanically ground and pol-

ished on both sides down to 1 mm abrasive. Surface activation

was done by rinsing the polished samples for 15 s in a solution

of 2.5 N HNO3 with 20 g/L NaF, followed by rinsing in distilled

water. Electrochemical hydrogenation was carried out galva-

nostatically (j ¼ �25 mA/cm2) at room temperature (RT) for

four days. H3PO4:glycerin (1:2 vol) [21,57,58] was the electro-

lyte; a fresh solution was prepared for each experiment. The

electrolyte was purged with Ar for 30 min before charging

started. Purging continued above the electrolyte during

charging to prevent oxygen absorption. The Tie6Ale4V sam-

ple was the cathode, while a cylindrical Pd90Pt10 (wt.%) sheet

surrounding it was the anode.

Chemical and microstructural characterization

Chemical composition was determined by glow discharge op-

tical emission spectrometry (GDOES), oxygen/nitrogen/

hydrogen analyzer, and energy-dispersive X-ray spectroscopy

(EDS) [21]. Density was determined by the Archimedes method

[21]. Microstructural analysis was performed by metallog-

raphy, scanning and transmission electron microscopy, and

XRD [21]. Hydrogen mapping and desorption analyses were

carried out by means of time-of-flight secondary ion mass

spectrometry (ToF-SIMS) [21,59] and temperature programmed

desorption mass spectrometry (TPD-MS) [21,33,47,57,60].
DSC analysis

The combination of DSC and TPD allows a thorough study of

the thermodynamics and kinetics of titanium hydrides and

their dissociation, with possibility to relate peaks in the TPD

spectrum to phase transformations [20]. Here, thermal anal-

ysis was performed using a DSC 404 F3 Pegasus® NETZSCH

differential scanning calorimeter. Small pieces of non-

hydrogenated and four-day hydrogenated Tie6Ale4V sam-

ples, weighing 12e15 mg, were cut from the hydrogenated

samples to fit into the small alumina crucibles. A sample

made of commercially pure Ti (CPeTi, Grade 2, ASTM F67e00,

max 0.25 wt% O, 5 mm thick plate, supplied by Barmil Ltd.),

weighing ~7 mg, was used to evaluate the DSC baseline

sensitivity. The scans were run from RT to ~1000 �C at a

heating rate of 15 �C/min (similar to the TPD conditions re-

ported in Ref. [21]) in an ultrahigh purity Ar atmosphere, using

a heat-flux DSC sensor. There was no visual evidence of

chemical reaction between the alumina crucibles and the

Tie6Ale4V samples after any of the DSC runs.
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https://doi.org/10.1016/j.ijhydene.2021.06.166


Fig. 1 e DSC thermograms of (a) non-hydrogenated

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 6 ( 2 0 2 1 ) 3 0 4 2 3e3 0 4 3 230426
HTXRD analysis

HTXRD is a powerful technique for verification of the

sequence of phase transformations [20,37,39], although some

delay in the dehydrogenation, compared to DSC and TPD,

might appear in HTXRD due to higher levels of oxygen in the

test chamber [20]. Here, HTXRD measurements were per-

formed in a D8 Advance diffractometer (Bruker AXS, Madison,

WI, USA) with a Bragg-Brentano geometry and a Cu-Ka radi-

ation source. Samples were placed on aMacor sample stage in

an Anton Paar XRK-900 high-temperature reaction chamber.

The contribution of the thermal expansion of the stage was

first measured by calibrating the stage height as a function of

temperature with an alignment slit. The temperature of the

sample was controlled with an Anton Paar TCU 750 controller

by mounting a K-type thermocouple in the sample holder

adjacent to the sample, using a heating rate of 10 �C/min.

Diffractogramswere acquired between RT and 600 �C. A linear

position sensitive device (PSD) detector (LYNXEYE XE-T) was

used, with an opening of 2.94�. The diffraction pattern was

recorded from 2q¼ 10� to 2q¼ 120� using a coupled theta/two-

theta scan type. Data points were acquired at increments of

0.02� and an acquisition time of 0.5 s. The lattice parameters

were fitted by Rietveld refinement, using TOPAS software ver.

5 (Bruker AXS, Madison, WI, USA). The refined parameters

included the lattice parameters, relative phase content, sam-

ple displacement, zero error, domain size, and the preferred

orientation of the sample. Peak position and the effect of

instrumental broadening and asymmetry were calibrated

using SRM Si 640f and LaB6 660c standard referencematerials,

respectively.

wrought and EBM Tie6Ale4V alloys and CP-Ti, and (b)

hydrogenated wrought and EBM alloys. The y-axes values

are after an arbitrary shift.
Results and discussion

Herein, the thermal stability and decomposition characteris-

tics of da and db hydrides in EBM and wrought Tie6Ale4V al-

loys are compared. The microstructure of both non-

hydrogenated and four-day hydrogenated alloys, as well as

hydrogen release from four-day hydrogenated alloys, were

described in detail in Ref. [21]. Since both non-hydrogenated

alloys contained ~6 wt% b and had similar density and

microstrain [21], any difference in the hydride decomposition

behavior between the EBM and wrought Tie6Ale4V alloys

should be attributed to their different microstructures.

DSC thermograms of non-hydrogenated wrought and EBM

Tie6Ale4V alloys aswell as of CP-Ti are shown in Fig. 1a. The a

/ b transformation can be clearly seen in the CP-Ti thermo-

grams at ca. 900 �C, confirming the sensitivity of the mea-

surement setup. A similar transformation is not apparent in

both non-hydrogenated alloys. DSC thermograms of both

hydrogenated alloys are shown in Fig. 1b. Although DSC data

was collected up to ~1000 �C, data analysis is discussed herein

only up to ~800 �C, where the hydrides decompose. In the

hydrogenated alloys, two endothermic transitions are

observed. The first transition has temperature maxima at

296 �C and 280 �C for thewrought and EBM alloys, respectively.

The wrought alloy shows a higher intensity, broader peak

compared to the EBM alloy, presumably due to higher

hydrogen uptake in the wrought alloy than in the EBM alloy
[21]. This phase transition cannot be associatedwith hydrogen

desorption because no hydrogen desorption was observed

around this temperature in the TPD spectra [21]. Therefore, it

is suggested that hydrogen originating from hydride dissoci-

ation was dissolved in the bulk alloy, as reported in Refs.

[49,54].

The second endothermic transition starts at 520 �C and

527 �C and ends at 808 �C and 784 �C for the wrought and EBM

alloys, respectively, with a maximum at ~625 �C for both al-

loys. These broad, continuous peaks appear at higher tem-

peratures compared to their respective peaks in the TPD

spectra, where hydrogen desorption starts at ~400 �C and the

maximum is at ~620 �C [21]. Since both DSC and TPD were

performed with flowing gas (Ar and He, respectively) using

similar heating rates (10e20 and 15 �C/min, respectively), it

can be concluded that the difference in reaction temperatures

does not originate from differences in the heating rates and/or

experimental environment (say, flowing gas vs. vacuum). This

suggests that hydrogen release from the alloy between 400

and 520 �C is due to reduction in hydride stoichiometry that is

not accompanied by phase transformation (release above

520 �C will be discussed below). The higher transition range of

the wrought alloy is attributed to larger hydrogen concentra-

tion in this alloy compared to the EBM alloy [21].

https://doi.org/10.1016/j.ijhydene.2021.06.166
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XRD patterns at temperatures between RT and 600 �C are

shown in Fig. 2 for both hydrogenated wrought and EBM

Tie6Ale4V alloys. The XRD patterns of both non-

hydrogenated alloys are shown as well. It is evident that the

XRD peaks are relatively broad. Peak broadening in titanium

alloys may result from microscopic internal stresses [61], lat-

tice distortion [62], wide phase compositional range [61],

crystallite size reduction [63], and amorphization [63,64].

Although the contribution of each possible effect cannot be

deconvolved from our data, a Rietveld fit showed a nano-

metric domain size (<200 nm) for all phases: 62e179 nm and

37e150 nm (varied with temperature) a and b domain sizes,

respectively, in the non-hydrogenated wrought alloy;

67e76 nm and 10e18 nm a and b domain sizes, respectively, in

the non-hydrogenated EBM alloy; 16e32 nm, 10e18 nm,

11e14 nm, and 10e24 nm domain sizes of a/aH, bH, da, and db,

respectively, in the hydrogenated wrought alloy; 26e34 nm,

10e24 nm, 10e17 nm, and 10e30 nm domain sizes of a/aH, bH,

da, and db, respectively, in the hydrogenated EBM alloy. Hence,

nano-domains seem to play a role in peak broadening. At RT,

both alloys contain a/aH (space group P63mmc [48]) and bH

(space group Im3m [48]) solid solutions, as well as da and db

hydrides (space group Fm3m), similar to our observations in

Ref. [21]. The da hydride in both alloys is stable up to 350 �C,
while the db hydride is stable up to ~450 �C and 600 �C in the

wrought and EBM alloys, respectively. Reflections related to
Fig. 2 e XRD patterns at different temperatures from both

electrochemically hydrogenated Tie6Ale4V alloys. (a) EBM

alloy, (b) wrought alloy.
the a/aH phase were observed above 2q ¼ 50�, but are not

included in Fig. 2 because they are comparatively minor.

Analysis of the phase contents in both non-hydrogenated

and four-day hydrogenated Tie6Ale4V alloys is provided in

Fig. 3 within the temperature range of RT to 500 �C. Although
HTXRD data was collected up to 600 �C, Rietveld refinement is

reported herein only up to 500 �C, above which unidentified

phases (probably oxides) and/or peak distortions made proper

fitting infeasible.

In both non-hydrogenated alloys, the a and b contents are

constant within the entire temperature range. In the case of

the hydrogenated alloys, however, the a/aH phase content is

significantly lower at RT compared to that of a in the non-

hydrogenated alloys. This is due to the tendency of da and db

to be formed from the primary a phase, in agreement with

[21]. The a/aH phase content in the wrought alloy increases

significantly and gradually with temperature up to 450 �C (and

then decreases), while that in the EBM alloy increases up to

500 �C (reaching its original relative content in the non-

hydrogenated state). At RT, the b/bH phase content in both

hydrogenated alloys (Fig. 3b) is similar to that of b in the non-

hydrogenated alloys, in agreementwith [21]. The bH content in

the wrought alloy is constant up to 200 �C, above which it

gradually increases. In contrast, the bH content in the EBM

alloy is almost unchanged up to 500 �C, but then it drops to

~0%. The differences in the bH behavior in both alloys are

attributed to microstructural effects. The wrought alloy is

characterized by large b grains forming a continuous network

[21]. Therefore, while heating the alloy, hydrogen diffuses

from the bulk through the continuous bH phase grains, stabi-

lizing the bH phase [56] and increasing its amount. Conversely,

the discontinuous small b grains of the EBM alloy prevent

hydrogen diffusion from the bulk, thus the bH content is

almost unchanged.

From Fig. 3c it is evident that the content of da is similar in

both hydrogenated alloys at RT. The da content decreases

gradually due to its decomposition into mainly the aH phase,

until full decomposition at 350 �C (in both alloys). In the

wrought alloy, the minor bH phase and db hydride are also

formed, whereas in the EBM alloy db hydride is the only minor

product of the da decomposition. The da decomposition prod-

ucts in the wrought alloy in this study are partially consistent

with the results in Ref. [49], where d in electrochemically hy-

drogenated Ti was completely dissociated into a þ b phases at

~327 �C. Similar observations to Ref. [49] were reported for

electrochemically hydrogenated EBM Tie6Ale4V [54]. Thus,

the formation of db as a decomposition product of da is reported

here for the first time. Nevertheless, the decomposition of the

EBM da phase into the sole minor db hydride, and not into both

minor bH phase and db hydride as in the wrought alloy, can be

attributed to the discontinuous (and, thus, less available), finer

needle-like b-phase particles and to the smaller lattice con-

stants (to be discussed below) in the EBM alloy. The relatively

higher amount of da in the wrought alloy compared to the EBM

alloy, during its decomposition between 200 and 280 �C, may

result from slower decomposition kinetics of da in the wrought

alloy. It may also indicate that a further generation of da hy-

dride occurs due to continuous hydrogen diffusion from the

bulk, which is more favorable in the wrought alloy compared

to the EBM one, as suggested above.
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The content of the db hydride is similar in both hydroge-

nated alloys at RT (Fig. 3d). The content of the db in the

wrought alloy slightly increases during heating up to 300 �C,
but then drops until full decomposition at 450 �C. In contrast,

its content in the EBM alloy increases significantly with tem-

perature up to 350 �C, and then drops until nearly full

decomposition only at 600 �C. A residual db peak is still present

at 600 �C; however, its amount could not be accurately quan-

tified with Rietveld analysis, as explained above.

The apparent differences in the db decomposition behavior

for the two alloysmay be attributed to the higher db content in

the EBM alloy and/or to slower decomposition kinetics in the

EBM alloy. However, the concurrent decreasing content of the

da hydride and the increasing content of the db hydride in the

EBM alloy when heatingmay be an indication of a localized da-

to-db hydride phase transformation, which becomes favorable

due to hindered hydrogen diffusion in the EBM alloy, as sug-

gested above. This hindered diffusion may also be the reason

for the higher temperature needed to complete the decom-

position of the db hydride phase.

The final decomposition of the db hydride above 350 �C into

aH (major)þ bH (minor) in the wrought alloy and into aH phase

in the EBMalloy are consistent with reports on the coexistence

of a, b and d at high temperatures in an Ar environment

[45,48]. The decomposition of db hydride in the EBM alloy into

aH, rather than to aHþ bH, again reflects the hindered diffusion

of hydrogen in the a-phase and the discontinuity of the b

phase in the EBM alloy.
Analysis of the change in lattice parameters with temper-

ature is shown in Fig. 4 for both non-hydrogenated and elec-

trochemically hydrogenated Tie6Ale4V alloys. The

differences between the maximal and minimal lattice

parameter values (i.e. expansion in percentage for each phase

for the whole temperature range) is presented in Fig. 4f. For

the non-hydrogenated alloys, it is evident from Fig. 4 that the

lattice parameters a (Fig. 4a) and c (Fig. 4b) of the a(hcp) phase

are similar in the wrought and in the EBM alloys; they grad-

ually expandwith temperature due to thermal expansion. The

lattice parameter a of the cubic b phase (Fig. 4c) in the non-

hydrogenated wrought alloy at RT is larger than in the non-

hydrogenated EBM alloy, and in agreement with the values

reported in Ref. [21]. The expansion rates of the lattice pa-

rameters a and c of the a phases and of the lattice parameter a

of the cubic b phase in the non-hydrogenated alloys are

similar to those estimated in Ref. [65].

For the hydrogenated alloys, it is evident from Fig. 4 that

the lattice parameter a of the a/aH phase in both alloys ex-

pands gradually with temperature (Fig. 4a). The lattice

parameter c of the a/aH phase in both alloys expands signifi-

cantly in comparison to the equivalent values in the non-

hydrogenated alloys (Fig. 4b), with larger c values in the

wrought alloy and a maximum at 450 and 500 �C in the

wrought and EBM alloys, respectively. The increase of the c

value in the hydrogenated a/aH phase compared to the non-

hydrogenated phase indicates hydrogen absorption in the

original a phase during heating, forming aH phase with

https://doi.org/10.1016/j.ijhydene.2021.06.166
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preferred expansion in the c direction (hence, at temperatures

higher than RT, the hcp phase is aH). The lattice parameter c of

the aH phase in the wrought alloy decreases at 500 �C, in

agreement with the decrease in the aH phase content in the

wrought alloy shown in Fig. 3a. This suggests hydrogen

release from the aH phase.

At RT, the lattice parameter a values of the bH phase in the

hydrogenated alloys are larger than the corresponding values

in the non-hydrogenated b phase (Fig. 4c), indicating the for-

mation of bH solid solution. The a values are larger for the

wrought alloy compared to the EBM alloy, in agreement with

what reported in Ref. [21] for RT. The larger a value of the bH

phase in the wrought alloy compared to the EBM alloy is

maintained over the whole temperature range. In both hy-

drogenated alloys, the a value decreases during heating from

RT to 200 �C, possibly suggesting a compositional change in bH

within this temperature range.

The lattice parameter a of the da hydride is similar in both

alloys and contracts when the alloy is heated from RT to
200 �C (Fig. 4d), possibly indicating a compositional change in

da during heating. Above 200 �C, a gradual increase in a is

observed up to full decomposition at 350 �C. The gradual

increase in the lattice parameter of da above 200 �C may be

associated to thermal expansion being more significant than

compositional changes, if any, in this hydride, until full

decomposition. The lattice parameter a of the db hydride is

similar in both alloys in the temperature range from RT to

200 �C (Fig. 4e). The lattice parameter a is smaller for db hy-

dride than for the da hydride. This indicates a different

composition of the hydride, presumably lower hydrogen

stoichiometry, as reported in Ref. [44]. This assumption is in

agreement with the tendency for higher temperature sta-

bility of the TiHx hydride with lower hydrogen content re-

ported in Ref. [44]. Above 200 �C, the lattice parameter of db
increases significantly in the wrought alloy up to 350 �C, and
then decreases until full decomposition at 500 �C. The

maximum at 350 �C is similar to the maximum at 375 ± 5 �C
observed elsewhere [48] for the d-phase in TiH2 powder. The

https://doi.org/10.1016/j.ijhydene.2021.06.166
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larger expansion of the lattice parameter a with temperature

for db in the wrought alloy compared to the EBM alloy sug-

gests a larger coefficient of thermal expansion. The maxima

in lattice expansion values shown in Fig. 4f indicate higher

expansion of c in the aH phase.

To summarize, hydrogenation of both wrought and EBM

Tie6Ale4V alloys containing 6 wt% b results in the formation

of da and db hydrides, following the reaction:

aðhcpÞ/ daðfccÞ þ dbðfccÞ (1)

These hydrides were recently reported by us for the first

time [21]. With regard to da, in both hydrogenated alloys da

fully decomposes at 350 �C, and its lattice parameter a is

minimal at 200 �C, but the decomposition reactions differ:

da /aH þ dH þ db Wrought alloy (2)

da /aH þ db EBM alloy (3)

In both hydrogenated alloys, db is first formed up to either

350 �C or 300 �C in the EBM and wrought alloys, respectively.

Then, it starts dissociating until it is nearly fully decomposed at

600 �C, as suggested from the trends in the derived content and

lattice parameters. The continuous network of b grains in the

wrought alloy facilitates hydrogen diffusion and provides a

route for long-distance migration of hydrogen from a localized

da hydride, forming the bH phase. In contrast, in the EBM alloy

the discontinuous small b grains deter hydrogen diffusion, and

consequently e the formation of bH phase; instead, it promotes

a localized da-to-db hydride transformation.

The high-temperature decomposition reactions of db are

also different in the two alloys. The following schemes for db
decomposition reactions for the two alloys are suggested:

db / aH þ bH þ [H2 (starting ~300 �C) Wrought alloy (4)

db / aH þ [H2 (starting ~350 �C) EBM alloy (5)

At either 280 �C (EBM alloy, DSC data) or 296 �C (wrought

alloy, DSC data), significant hydrogen release from the hy-

drides into the solid solutions in the bulk alloy is observed.

There is an apparent discrepancy between the HTXRD re-

sults, which indicate hydride full decomposition at 600 �C, and
the TPD andDSC results that reveal hydrogen peaks at 620 and

625 �C, respectively. However, based on the HTXRD results we

can distinguish between hydrides decomposition (up to

600 �C) and other hydrogen release effects. Due to the

maximum hydrogen desorption peaks that were observed in

TPD at ~620 �C [21] we may conclude that db hydride contrib-

utes more to the aforementioned hydrogen release. The

hydrogen desorption shown in TPD at temperatures higher

than 600 �C is not attributed to a difference in kinetics due the

different environments in the DSC and XRD chambers [42,45]

(as was explained in the experimental section); instead, it is

attributed to hydrogen desorption from the hydride decom-

posing in the sample's bulk and/or hydrogen desorption from

bH and aH during heating above 600 �C.
The sequences of decomposition reactions shown above

are somewhat different than those suggested before

[20,39,41,45,48] for decomposition of titanium hydride, d(TiH2),

in pure titaniumhydride powders. On the other hand, there are

some consistencies between the sequences reported else-

where for titanium hydride in wrought CP-Ti [49], or d-TiHx in

electrochemically hydrogenated EBM Tie6Ale4V [54], and

those observed in the present work for decomposition of the da

hydride in wrought Tie6Ale4V. The complete decomposition

of db at 600 �C is also consistent with the complete decompo-

sition of d-hydride in titanium hydride powder reported else-

where [37]. Discrepancies between the findings in different

reports may be related to different behaviors in gaseous vs.

electrochemically charged materials, sheets vs. powder sam-

ples, hydrides in CP-Ti vs. Tie6Ale4V, hydrides in EBM

Tie6Ale4V vs. wrought Tie6Ale4V, different heating rates,

different test environments, isothermal vs. non-isothermal

dehydrogenation conditions, oxidation and contamination in

the test chamber, etc.
Conclusions

Themicrostructural effect on hydrides formation and thermal

decomposition in four-day electrochemically hydrogenated

electron beam melted (EBM) and wrought Tie6Ale4V alloys

(both with 6 wt% b content) was studied. In both alloys,

hydrogen incorporation into the aH phase resulted in prefer-

ential expansion in the c-direction of the hcp structure.

HTXRD measurements showed that the kinetics and the

products of thermal hydride decomposition are different in

the two alloys. The dissociation of da hydridewas slower in the

wrought alloy than in the EBM alloy due to slower kinetics

and/or faster hydrogen diffusion in the wrought alloy than in

the EBM alloy. It is suggested that the non-continuous, finer

needle-like b-phase particles with smaller lattice constants in

the non-hydrogenated EBM alloy inhibit hydrogen diffusion,

thus imposing da decomposition into db instead of into bH þ db,

and db decomposition into aH instead of into aH þ bH.
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