Hydrogen effect on phase angle shift in electrochemical impedance spectroscopy during corrosion fatigue crack emanation

Xiankang Zhong a, Yuantai He a, Noam Eliaz b, Kyra Sedransk Campbell c, Junying Hu a, *

a State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
b Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
c Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3DJ, UK

HIGHLIGHTS

- Hydrogen leads to a lower peak intensity and shifts the peak to a higher frequency.
- Hydrogen causes the formation of a crack with shorter length than its absence.
- Hydrogen results in shortening crack initiation time and corrosion fatigue life.

ABSTRACT

It is generally considered that hydrogen could accelerate the corrosion fatigue process, however, the effective monitoring approach for the corrosion fatigue development in the hydrogen related environment is still missing. In this work, the hydrogen effect on phase angle shifts in electrochemical impedance spectroscopy during corrosion fatigue crack formation in drill pipe steel was in-situ studied. The results show that phase angle shifts as a function of time could be used to monitor the corrosion fatigue development in the presence of hydrogen. The permeated hydrogen leads to a lower peak intensity and shifts the peak to a higher frequency on the phase angle vs. frequency curve. These differences are due to the formation of a corrosion fatigue crack with a shorter length than in the absence of hydrogen. The phase angle shift reveals that the presence of hydrogen results in shortening crack initiation time and corrosion fatigue life of the drill pipe steel.

© 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

INTRODUCTION

Drilling tools, critical components in the exploitation process for recovering oil and gas, encounter a range of challenging environments during their operation [1–5]. In particular, the drill pipe is a critical component in the drill string which must not only withstand complicated alternating loads; but also, it must serve as a channel to circulate drilling fluid in which corrosive species are usually present [6,7]. Due to these
combined effect of the alternating loads and the corrosive environment, corrosion fatigue failures of drill pipes occur frequently.

Sour drilling environments contain gaseous or liquid hydrogen sulfide (H₂S), further increasing the risk of hydrogen embrittlement and failure of drill pipes. When most of carbon steels are exposed to the wet H₂S-containing environment, hydrogen atoms can easily penetrate into the bulk steel, subsequently leading to hydrogen blistering or hydrogen-induced cracking phenomena [8–16]. In addition, under the combined effect of loads and hydrogen, catastrophic drill pipe corrosion fatigue failures have been reported to occur [17,18]. Li et al. [19] studied the fatigue and corrosion fatigue behaviors of G105 and S135 steels in H₂S-containing environment, respectively. It was found that there was no obvious fatigue limit for these steels in H₂S-containing solutions; further, it was demonstrated that the fatigue cracks initiated from the surface and then propagated continuously into the bulk material. Liu et al. [20] discussed the corrosion fatigue propagation behavior of S135 steel drill pipe in H₂S-containing environment. It was shown that H₂S caused a distinct acceleration of the corrosion fatigue crack propagation rate; the propagation rate in H₂S-containing solution was about ten times higher than that in a H₂S-free environment. Investigations of the mechanical and corrosion properties of drill pipe steel charged electrochemically with hydrogen [21–23] have indicated that the introduction of hydrogen not only deteriorated the mechanical properties, but also made the drill pipe more susceptible to corrosion.

According to the literature [17–20,24–27], the presence of hydrogen both accelerates corrosion and increases the risk of fatigue of the steels in the operation environment. Therefore, it can be expected that corrosion fatigue would also accelerate in the presence of hydrogen. Unfortunately, existing literature investigating in situ analysis of corrosion fatigue of steels, in the presence of hydrogen, is insufficient. Furthermore, the monitoring of corrosion fatigue crack formation under such environment remains unreported.

Bosch et al. [28,29] and Luo et al. [30] reported an in situ method for monitoring the initiation and propagation of stress corrosion cracking (SCC) by electrochemical impedance spectroscopy (EIS). They observed that crack formation caused changes in the EIS phase angle. Previously, we also developed a new experimental methodology and apparatus where a fatigue test and EIS measurement could be carried out at the same time [31]. This novel approach demonstrated that the correlation between the length of corrosion fatigue crack and phase angle shift could be studied; furthermore, it was demonstrated that phase angle shift could be employed to reveal the crack initiation and propagation in corrosion fatigue test. As such, we anticipate that EIS phase angle data can also be employed to reveal the corrosion fatigue crack formation in the presence of hydrogen.

Due to the toxicity of H₂S and the compounding dangers in employing a rotating fatigue test, in the presence of H₂S, a common proxy experiment was employed: electrochemical hydrogenation. In this technique, electrochemical hydrogen-charging introduces hydrogen into the steel substrate, providing improved safety whilst being both cost efficient and simple to execute [32,33].

The objective of this work is to unmask the hydrogen effect on the phase angle shifts of electrochemical impedance spectroscopy of drill pipe steel in the presence of hydrogen.

Experimental

G105 drill pipe steel, a material commonly used for drill pipe in oil and gas fields where H₂S exists [34], was used in this work. The chemical composition (wt. %) of the G105 drill pipe steel is as follows: C 0.26, Si 0.26, Mn 1.08, P 0.09, S 0.04, Cr 0.83, Mo 0.17, Ni 0.04, Ti 0.02, with Fe as balance. The C and S contents were measured using a Carbon—Sulfur Analyzer instrument (a CS-3000 system, NCS Testing Technology Co. Ltd., China), while the other elements were measured by Atomic Absorption Spectroscopy (iCE 300, Thermo Fisher Scientific, MA, USA). In the corrosion fatigue experiments, a standard fatigue sample was machined from a drill pipe, as schematically illustrated in Fig. 1a.

3.5 wt% NaCl solution was employed as the test solution, which was prepared from NaCl and deionized water (DI water). The solution used for hydrogenation was 0.2 mol/L sulfuric acid (H₂SO₄) with the addition of 1 g/L thiourea (CH₄N₂S). The latter was added as a surface poison in order to prevent hydrogen atoms from recombination [35,36].

The solution was degassed with N₂ gas for 2 h before the onset of hydrogenation, and N₂ purging continued throughout the experiment. Hydrogenation was done using a two-electrode setup where the G105 steel sample and a Pt sheet were the working electrode (WE) and counter electrode (CE), respectively. The exposed surface area of the G105 steel sample was 2.5 cm². The phase shift is determined by the ratio between the surface area of the electrode and the surface area of the crack, i.e., the phase shift in EIS decreases with increasing surface area or sample diameter. The details can be found in the previous literature [28]. This is why the surface area of the sample is required to be controlled. The current density was maintained at ~20 mA/cm² during the whole hydrogenation period (12 h). Following hydrogenation, the sample was immediately rinsed with deionized (DI) water and ethanol, and subsequently dried in a N₂ gas flow. Then, it was used immediately in the corrosion fatigue experiment.

In our previous work [31], an experimental setup for real-time monitoring of the electrochemical parameters during corrosion fatigue experiments was developed. This setup is composed of a pure bending fatigue testing machine and a cell for electrochemical measurement (Fig. 1b). Detailed information can be found elsewhere [31].

EIS measurements were conducted periodically (one measurement every 30 min) during the corrosion fatigue test, employing a standard three-electrode setup. The corrosion fatigue sample was employed as a WE, a coiled Pt wire was as a CE, and Ag/AgCl (saturated KCl) electrode was used as a reference electrode. In order to ensure identical exposed surface area in all experiments, silicone sealant was employed to mask untested area on the WE (Fig. 1c). The sample was rotated in the test solution at a speed of 40 cycles/min, and the stress was kept constant at 176 MPa. EIS measurements were performed using a CS 350 electrochemical workstation (Wuhan Corttest Instruments Corp. Ltd., China). A sinusoidal potential
perturbation of 10 mV was used during the EIS measurement and the frequency range was: 100 kHz to 10 mHz. Throughout the experiment, the temperature inside the cell was maintained at 25 ± 0.5 °C.

The fracture morphologies of samples with or without hydrogen were characterized using a FEI Quanta 450FEG scanning electron microscope (SEM, Oregon, USA). Cross-sections were inspected by a digital camera (PowerShot SX, Canon Inc., Tokyo, Japan).

Results and discussion

The phase angle characteristics in the presence vs. in the absence of hydrogen

It has been reported that the phase angle shift in the specific frequency range could be used to monitor crack formation in SCC [28–30]. In order to establish how the corrosion fatigue crack impacts the phase angle in the presence of hydrogen, phase angle of the sample at each frequency was first measured at the beginning and at the end of fatigue test. At the beginning of the experiment, no crack is present on the sample surface. Therefore, the curve measured at the beginning of the experiment is labelled “without crack” (Fig. 2a). As the experiment proceeds, cracks will initiate and propagate. Accordingly, it is certain that crack is present on the sample at the end of the fatigue test and the curve recorded at the end of the experiment is labelled “with crack” (Fig. 2a).

From Fig. 2a, it is evident that the curves of cracked and un-cracked sample are distinct from one another, for the un-charged sample. The curve before cracking on the sample has occurred shows a maximum at 4.3 Hz and ca. –56.4°. After the sample has cracked there is also a maximum in the phase angle vs. frequency curve; however, it appears at 0.2 Hz and ca. –31.9°. The presence of a crack results in shift of the phase angle peak to a lower frequency and with a reduced intensity (i.e. in the less negative direction). These results are in consistent with those of artificial crack experiments in our previous work [31].

The phase angle vs. frequency curves of the hydrogenated samples, in 3.5 wt% solution, taken before and after the formation of a crack, i.e. with or without a crack, are shown in Fig. 2b. The experiment taken before the crack (without crack) has a peak maximum on the curve at 4.3 Hz and ca. –60.1°. After the formation of the crack, the peak maximum is shifted to 4.3 Hz and ca. –45.8°. The relationship between the pre- and post-crack measurements (namely peak maximum phase angle and intensity changes) are consistent between the uncharged and charged samples; i.e., the presence of a crack shifts the EIS phase angle peak to both lower frequency and lower intensity.

In principle, inherent variation in phase angle for the same sample (i.e., either the hydrogenated or non-hydrogenated one presented herein) is possible; this includes attributions to either change in surface condition or crack formation. To rule out the possible influence of the surface condition, a parameter Δϕ, was defined to equal the change in phase angle

Fig. 1 – (a) Schematics of (a) corrosion fatigue sample (dimensions in mm), (b) corrosion fatigue test setup, and (c) the G105 sample used for corrosion fatigue experiments.
The phase angle are affected by both the surface condition of the sample and the crack impedance [21]. Therefore, the impedance of the sample with and without a crack may be represented by the equivalent circuits shown in Fig. 4.

The representations presented in Fig. 4a and b for the impedance under the two scenarios of interest, are expressed mathematically, where Z_{wc} is the impedance without a crack present (Eq. (2)) and Z_{wc} is with a crack present (Eq. (3))

\[
Z_{wc} = \frac{R_{surf} + Z_{crack} + Q_{surf}(j\omega)^{n_{surf}}Z_{crack}}{R_{surf}Z_{crack}} + R_s
\]

\[
Z_{wc} = \frac{R_{surf} + Z_{crack} + Q_{surf}(j\omega)^{n_{surf}}Z_{crack}}{R_{surf}Z_{crack}} + R_s
\]

where the terms employed are consistent with Fig. 4. Additional terms are: j is the imaginary unit, n_{surf} is the dispersion index, and ω is the angular frequency. The term Z_{crack} will be further explored as it is a complex variable here which is composed of various other factors. Regardless, the difference between the impedance of the system with and without a crack is expressed as:

\[
\Delta Z = Z_{wc} - Z_{wc}
\]

In its simplest form, Z_{crack} has been described as the impedance of a round hole. This has been previously employed in a model (Bosch et al. [28]) where a crack impedance model of SCC was suggested to consist of round-hole-cracks. The impedance of a round-hole-crack (Z_{crack}) is a function of crack-tip impedance ($Z_{cracktip}$), crack-wall impedance per unit length (Z_{wall}), the resistance of solution inside the round crack per unit length (R_{sol}), and the round-crack length (l). Therefore, Z_{crack} can be described as Eq. (5) [29].

This model starts with the transmission line model, used for the cylindrical pore model to describe the impedance of porous electrodes, the details can be found in previous work [29].

\[
Z_{crack} = \frac{\sqrt{R_{sol}Z_{wall}}}{Z_{cracktip}} \left(1 + \frac{Z_{cracktip} - \sqrt{R_{sol}Z_{wall}}}{\sqrt{R_{sol}Z_{wall}} + \frac{1}{\coth \left(\frac{1}{\sqrt{R_{sol}Z_{wall}}} \right)}} \right)
\]

A corrosion fatigue crack can also consist of a finite number (m) of round holes with the same length [31]. In this scenario, to take the frequency dispersion into consideration, the dispersion index (n) is introduced into the corrosion fatigue crack-tip impedance and the corrosion fatigue crack-wall impedance, i.e., the capacitance of the electrical double layer is replaced by a CPE.

Therefore, $Z_{cracktip}$ is defined as a function of crack-tip resistance ($R_{cracktip}$) and the double-layer capacitance at the crack tip ($Q_{cracktip}$), which can be regarded as a prefactor of a
Similarly, Z_{wall} is related to R_{wall} and Q_{wall}. Therefore, Z_{cracktip} and Z_{wall} can be described as follows:

$$Z_{\text{cracktip}} = \frac{R_{\text{cracktip}}}{1 + R_{\text{cracktip}} Q_{\text{cracktip}} (j\omega)^n_{\text{cracktip}}}$$

$$Z_{\text{wall}} = \frac{R_{\text{wall}}}{1 + R_{\text{wall}} Q_{\text{wall}} (j\omega)^n_{\text{wall}}}$$

Combining Eqs. (2)–(7), the difference in impedance of the sample, either cracked or uncracked, is as follows:

$$\Delta Z = \frac{-m R_{\text{surf}}^2}{1 + Q_{\text{surf}}^n (j\omega)} \times \left(1 + Q_{\text{surf}}^n (j\omega) \right) \sqrt{R_{\text{sol}} Z_{\text{wall}} + m R_{\text{surf}} Z_{\text{cracktip}}} + \left(m R_{\text{surf}} \sqrt{R_{\text{sol}} Z_{\text{wall}} + (1 + Q_{\text{surf}}^n (j\omega)^n) Z_{\text{cracktip}}} \sqrt{R_{\text{sol}} Z_{\text{wall}}} \right) \coth \left(L \sqrt{\frac{R_{\text{surf}}}{Z_{\text{surf}}}} \right)$$

Accordingly, $\Delta \rho$ can be described as follows:

$$\Delta \rho = \tan^{-1} \left(\frac{\Delta Z_{\text{im}}}{\Delta Z_{\text{re}}} \right)$$

Once a corrosion fatigue crack emanates from the surface to the bulk steel, the parameters $R_{\text{surf}}, Q_{\text{surf}}, R_{\text{sol}}, R_{\text{wall}}, R_{\text{cracktip}}, Q_{\text{wall}}$ and Q_{cracktip} will be fixed during the experiment. According to Eq. (8), the parameter $\Delta \rho$ is determined by the crack length L at a certain angular frequency ω.

In order to understand the relationship between $\Delta \rho$ and L at each frequency more directly, three exemplar crack lengths ($L = 1, 1.5$ and 2 mm) were studied (Fig. 5). The parameters required to calculate $\Delta \rho$ at each condition are listed in Table 1. As the crack length increases, the entire of the peak, as well as the maximum comparatively shifts to lower frequencies. Additionally, as the crack length increases the intensity increases, although less significantly from 1 to 1.5 mm crack length. The relationship can be considered in the context of the previously presented experimental results (Fig. 3). In the presence of hydrogen, the peak intensity of $\Delta \rho$ is lower than that in the absence of hydrogen, whilst the frequency of the peak is higher than its counterpart. As such, this implies that the length of the crack formed on the sample in the presence of hydrogen is shorter than that without hydrogen. This is confirmed by optical cross-section macrographs of cracks formed on hydrogenated and uncharged samples (Fig. 6). It is apparent that the length of the crack formed in the hydrogenated sample is much shorter than that in the uncharged sample. The fracture morphologies of the uncharged and hydrogenated samples are shown in Fig. 7. The uncharged sample experienced a ductile fracture, as is evident by the presence of many dimples on the fracture surface. By contrast, the

![Fig. 3 – $\Delta \rho$ vs. frequency curves of both uncharged and hydrogenated samples in 3.5 wt% NaCl solution.](image)

![Fig. 4 – Equivalent circuit models for the impedance before cracking (a) and after cracking (b) samples. In both circuits R_s is the solution resistance, R_{surf} represents the surface resistance of WE, Q_{surf} is the capacitance of a constant phase element (CPE) of the WE surface, Z_{crack} is the impedance of the crack, and L stands for the length of the crack.](image)
The hydrogenated sample exhibits brittle fracture characteristics, namely cleavage fracture. These visual indicators of different failure mechanisms indicate that hydrogen decreases the toughness of the drill steel. The implication of this change to the steel itself is that the corrosion fatigue life is likely shortened.

The fracture morphology of each sample is composed of three zones: crack initiation, crack propagation, and final fracture. In the crack initiation zone, some pits (not shown herein) were noticed, which probably served as initiation sites for the fatigue crack. The crack propagation zone of the uncharged sample is remarkably larger than that of the hydrogenated sample. This means that the crack length in the uncharged sample is longer than that in the hydrogenated sample. These results also support our aforementioned conclusion that hydrogen decreases the crack length, hence the smaller \(D_p \), lower peak intensity and its shift to higher frequency.

Table 1 – Selected parameters for plotting of Fig. 5 [31].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crack-tip resistance, (R_{tip})</td>
<td>24 kΩ</td>
</tr>
<tr>
<td>Crack-wall resistance per unit length, (R_{wall})</td>
<td>10 kΩ mm</td>
</tr>
<tr>
<td>Solution resistance inside crack, (R_{sol})</td>
<td>1.8 kΩ/mm</td>
</tr>
<tr>
<td>Constant phase angle component of crack wall per length, (Q_{wall})</td>
<td>39.449 μF/mm</td>
</tr>
<tr>
<td>Constant phase angle component of crack tip, (Q_{tip})</td>
<td>0.76 ((L = 1) mm), 0.63 ((L = 1.5) mm), 0.72 ((L = 2) mm)</td>
</tr>
<tr>
<td>Solution resistance, (R_S)</td>
<td>39.032 × 10^{-6} (/θ) cm² s⁻¹</td>
</tr>
<tr>
<td>Surface resistance, (R_{surf})</td>
<td>14.17 Ω</td>
</tr>
<tr>
<td>Surface constant phase angle component, (Q_{surf})</td>
<td>271 Ω</td>
</tr>
<tr>
<td>The number of round hole cracks, (m)</td>
<td>839.37 1/(Ω cm² s⁻¹)</td>
</tr>
<tr>
<td>Crack length, (L)</td>
<td>0.76</td>
</tr>
<tr>
<td>Crack width, (d)</td>
<td>1, 1.5, 2 mm</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0.5 mm</td>
</tr>
</tbody>
</table>
respectively. Differences are evident in the: i) characteristic response frequencies, ii) time of crack initiation, and iii) corrosion fatigue life.

As shown in Figs. 3 and 5, the Δ peak maximum appears at a specific frequency. This specific frequency can be called ‘characteristic response frequency’, at which the most obvious change in phase angle is observed. It can be seen from Fig. 8 that in the presence of hydrogen, the characteristic response frequency appears at either 100 Hz or 50 Hz. In an uncharged sample, this occurs at lower frequencies, e.g., 0.1 Hz and 0.01 Hz (Fig. 9). According to the conclusions drawn in Section Theoretical explanation of the phase angle shift in the presence of hydrogen, the presence of hydrogen causes a shorter crack, for which the characteristic response frequency appears at higher frequency than for a longer crack. This offers an explanation as to why the characteristic response frequency in the presence of hydrogen is higher than that in the absence of hydrogen.

The time when a sudden increase appears in the phase shift angle curve can be used to identify the time of crack initiation [31]. As shown in Fig. 8, the crack initiation in the presence of hydrogen appears at around 3 h, while in the absence of hydrogen it appears at approximately 8 h. It is well known that permeated hydrogen accelerates pitting because the passive (or oxide) film on the steel surface is damaged through the interaction with permeated hydrogen [24,37–41]. While crack usually initiates from the pits. Therefore, the crack initiation time in the presence of hydrogen is much shorter than in its absence.

A significant difference in corrosion fatigue life between hydrogenated and uncharged samples is also clearly evident when comparing Figs. 8 and 9. In the absence of hydrogen, the corrosion fatigue life of the sample is around 24 h, which is about two-fold of that of hydrogenated sample. When hydrogen enters the sample, the mechanical properties of the steel, such as tensile strength, hardness and yield strength,
often change. Fig. 7b shows a brittle fracture characteristic of hydrogenated steel sample, indicating that hydrogen degrades the toughness of the steel, hence, the corrosion fatigue life is shortened [42,43].

Conclusions

The hydrogen effect on EIS Bode plot of the phase angle shift during corrosion fatigue crack emanation in G105 drill pipe steel was investigated. The main conclusions are:

1. The presence of hydrogen results in a lower peak intensity on the phase angle vs. frequency plot. The peak in the presence of hydrogen is also shifted to higher frequency. These can be attributed to shorter crack length in the presence of hydrogen than in its absence.

2. Hydrogen shortens both the crack initiation time and the corrosion fatigue life of the G105 drill steel. The former effect is due to enhanced surface pitting resulted from hydrogen, while the latter is due to a decrease in the toughness of the steel following exposure to hydrogen.

Credit authorship contribution statement

Data availability statement

The data that support the findings of this study are available on request from the corresponding author, [J. H.].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgements

X. Zhong and J. Hu are grateful to the support from the National Natural Science Foundation of China (grant No. 52171080, 51501160) and Scientific and Technological Innovation Team for the Safety of Petroleum Tubular Goods at Southwest Petroleum University (grant No. 2018CXTD01).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijhydene.2021.09.205.

REFERENCES

[29] Bosch RW, Moons F, Zheng JH, Bogaerts WF. Application of electrochemical impedance spectroscopy for monitoring...

